Warm Up

$$
f(x)=-2 x-9
$$

Evaluate:

$$
\begin{aligned}
& b(x)=x^{2}-3 x+4 \\
& f(b(-6))
\end{aligned}
$$

$$
\begin{aligned}
\frac{b(4)}{\left.b_{0}\right)=42^{2}-3(4)+4} & f(x)=-2(-3)-9 \\
=8 & =-3 \\
b(f(-6)))= & (-2 x-9)^{2}-3(2 x-9)+4 \\
& \left((-2(-6)-9)^{2} \cdot 3(-2(-6))\right. \\
& (3)^{2}
\end{aligned}
$$

Rate of Change

Rate of Change - ratio that compares the amount of change in the dependent variable, to the amount of change in the independent variable.

How to find rate of change:
$\frac{\text { Change in dependent variable }}{\text { Change in independent variable }}=\frac{\Delta \text { Dependent }}{\Delta \text { Independent }}=\frac{\Delta y}{\Delta x}$
Δ (delta) is used by mathematicians to mean "change in"

Interpret this rate of change in context of the graph.

